
~4O8 649 __

I -~ ________

I ~

I
3r

p

I S

cf::
c..5 <~i1

I ___________________________________________

I _____________________________________________________

I

__________________________________________________________________ A

I ___________________________________________________

2' _______________________________________________



SR-18

I THE MITRE CORPORATION
Middlesex Turnpike, Rte. 62 Bedford, Massachusetts

ON THE APPLICATION OF
THE THEORY OF LOCKING MEDIA
TO GROUND SHOCK PHENOMENA

I
by

Paul Veidlinger, Consulting Engineer, 400 Madison Avenue, New York 17, N. Y.

26 September 1960

I
I

2. The resarch reporte In this doument was
apported by the Certment of the Air ForceIeiner Air Force Contract A.33 (00) 39M.

I



FOMARD

The M RIZ Corporation Is concerned vith the survivability of the
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SYN0P81

Reccut invooti-tons on groundohock phenomena indicate that the

dynwi udc recponse of certain non-linear (locking) media, may approxlmte

the behavior of coheove Granular soils and porous rock under high pres-

sures. There is a considerable body of fairly recent American and USSR

scientific literature on this topic. It seems that the Russian investi-

gations parallel our efforts in this field. The theory of vave propaga-

tion in such materials should have application to the design of underground

shelters at very high pressure levels and may shed some additional light,

by these relatively simple means on problems associated with phenomena

near ground zero, In case of surface bursts or underground explosions.

In S.ctions 1I and III results of current investigations are presented.

i



1. RECENT AND CURRMT INVESTIGATIONS.

As a result of our investigations into proundshock phenomena in the

recent years, we have conjectured that the behavior of porous or granular

solids (such as dry sand or porous rock) could be characterized by a med-

in which under uniaxial compression exhibits a stress-strain diagram which

tends to become parallel vitk the stress axis beyond a certain critical

strain, (Figure 1). Such a stress-strain diagram may be replaced by vari-

ous bi-linear approximations, and such materials are currently referred

to as locking media, or materials of limited compressibility, (Figure 2a,

b, c, d).

The static behavior of such materials has been explored to a consi-

derable extent since about 1957 [References 1, 2, 3, 4].

The dynamic problem for the case of the upwards curving stress-strain

diagram has been considered previously, [References 5 and 6], but the assump-

tion of a stress-strain curve having a continuous derivative, (Figure 1)

makes it difficult to obtain closed form solutions. Some more recent ef-

forts in this direction provide additional results for specific initial

conditions, (Reference 71.

The linear approximations shown on Figure 2a, b, c have resulted in

relatively simple solutions and some of these results have been applied

with some success to the prediction of groundshock phenomena, (References

8 and 91 and have also been published in the open literature, [References

10 and 11). A medium which shows a residual elasticity, (Figure 2d), is

treated in Section II of this report.

!
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If the tvo or three dimensional case is considered, one my replace

the stress-strain diagram of the uniaxa case vith a etrees-dilatation

diagram to obtain silar results. After the critical value of the dila-

tation to reachedp a pout compaction yield condition must be specified.

One mayp, for example, assume that the medium behaves Like an invisaid

flwl or that it folo umoulombs lw et hilure. Budk a medium for the

case of s"herical symmetry is treated in betion III of this report.

Duriag our ressarehes into this eatbjest we Also noted tkat a ', nsider-

able interest in these topics exists In the U, as shon by Reference

12, 13, i4, 13, 16 and 17. It appears, that the Russian investigations

parallel our own efforts, and the extensive numerical work of Refereauu 3:1,

Indicates that the application of these researches Is probably also eerie

susly considered. Signifiantlyp most of theme papers are directed tovwrda

problem associated with explosions and apparently the USSR rcaea'ehers

suffer fron lack of experimental data just as much as our own invest~a-

tions do.

As the result of our own vork and the review of the USSR literatre,

it is believed that these investigations have application to +JIe following

topics of current nteresti

(a) Oroundshok h enwemea in dry granular and cohesive soils, and

porous rock.

(b) FeasibiUty stuftes for the design of underground shelters near

ground sero.

(a) 'ounrdshook phemepaa in the neighborhood of ground zero of

surface bursts.

(4) Phenomena aosicated with nuclear explosions aontained in

Ubder'OMAd Oavitioe.
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Numerical evaluations in a few specific cases leads us to believe

that this approach may indeed contribute to the solution of the above

problem, (References 18 and 19). It appears that the intrinsic dissipative

behavior of the medium is the crucial charanteristic which makes it approp-

riate for such investigations. Further the retical and experimental work

n this field may be quite fruitful.

In the following Sections II and III or this report some additional

contributions to the theory of locking medlis are presented.

In Section II a medium vith a stress-u train diagram as shown on Fig-

ure 2d is considered. The purpose of this investigation is to clarify

the effects of "residual elasticity", that is, elastic action which persists

after compaction or locking has occurred. This modification of the stress-

strain relationship is of importance since it brings the idealized theory

closer to the anticipated behavior of real materials. In our first and

second report to the MITRE Corporation [References 18 and 19] the effects

of this behavior were numerically evaluated, and it vas shovn that small

residual elasticity after compaction does not significantly influence

the attenuation of peak stresses in the medium at depth of 500 feet or

more, as compared to a locking medium without such residual elasticity.

This medium also permits us to draw certain conclusions regarding non-

linear effects due to the influence of the high intensity airslap in the

g vicinity of ground zero.

In Section III spherical waves in an ideal locking medium are in-

9 vestigated. These results prove to be useful in clarifying the close-in

effects of the exploding casing at the point of impact. Numerical evalua-

tions of this work will appear in our subsequent reports on this subject.

t
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SECTION 11

WAkVE PR~OPAGATION IN A PLASTIC-ELASTIC UEDID4

By

Richard Skalak



I. STATEMENT OF PROBLEM.

The response of a semi-infinite body of plastic-elastic medium, Fig-

ure 1, is to be found due to a blast wave pressure applied to .he suxface

of the medium. The stress-strain curve of the material is shown in Fig-

ure 2. The pressure loading is assumed to be applied to the entire sur-

face of the medium so that the problem is one-dimensional. The type of

time history of the surface pressure considered is shown in Figure 3. The

strains are assumed to be small throughout.I
II. GOVERNING EQUATIONS.

(a) The Shock Wave.

The applied loading generates a plane shock wave which comj~reba ,

the medium from its initial state to a state corresponding to some poinx

on the inclined portion of the stress-strain curve. The velocity of

propagation of this shock wave at any time is

where E is the secant modulus of elasticity, Figure 2

imT~!(2;

where a 45 are the normal vertical stress and strain immediately behind

the shock front, the density p is assumed constant because the strains are

assumed to be small.

The particle velocity behind the shock wave is

a
Pze



.2.

In terms of the modulus I of the inclined portion of the stress-

strain curve$ Figure 2p the value of am be vritten a

a, a a

PC

where ie Is the plastic strain shovia in Figure 2, an c 2 0 1/p.

From Equations (1) through () it follovs that:

* ~~ .2 2
a - " a)

us 1 ') (6)

(b) Region Behind the Shock Wave.

Behind the shocl wave the state of the medium is assumed to correm

upond to points on the inclined portion of the stress-strain curve, Fig-

ure 2. If u is the downward displacement of any particle from its orig-

inal position, the equation of motion is:

- - P (7)

By definition, considering compressive strains positive,

6- -~ (8)

Since g is a constant, (8) yields

b(4 - CC)Ot - (9)
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Frm Equation (9) end

a%. (4 -i a) z (10)I
it folloes

e The fi in Equations (7) and (11) I the particle velocity. From these

equations,

z° 02 £°

(12)
22

In. BOLMTIMl FOR A OIVEN SURFACE PRESSURE HISTORY

Consider a general field point (i, t) in Figure 4 and two points

labeled 1 and 2 on the shock curve located by the characteristics passing

through the field point as shown in Figure 4. By virtue of Equations (7),

(11) and (12)0 the entire field behind the shock wave has the form

9 a f(z - at) + g(s + ct) (13)

ua S f( -ot) - g(, +ct)I (14)

where f and g are unknown functions.

Writing Equations (13) and (14) for the point 2 in Figure 4:

a2 "f(22 - ct 2 ) + 9('2 + ct2 ) (15)

!2 [f('2 - ct 2 ) - g~'2 + ct2)(16)



Frm (15) and (16)
f(z2 "ot2) ( . (17)

and mines along the charecteristio (s - at) Is ometant~ it follows that

for the field point s, t indicated in Figure

ir( - t) 1 I (18)I

Similarly, considering point I it Is found that for the field point z, t

g(s + t) - 1 3 11(9

The solution for any field point can now be expressed In terms of

values aso and us directly behind the shock front by substituting (18) and

(19) into (13) and (l4):

asa l( ) + ai -ft (20)

(l + FE- c (a - az) (21)

The location of the shock front z(t) and the values of stress and

velocity aze and as at the shock front are unknown in advance for a given

surface pressure history. However, if the location of the shock wave &s(t)
is determined, then aze and t a are given by Equations (5) and (6) and the

remainder of the field can be found from (20) and (21). The solution is

completed by establishing sa (t) for a given surface pressure history as

follows:

Consider a field point which is on the surface a a 0 as shown in

Figure (5). For this point the stress az given by Equation (20) is the

applied pressure p at time t. By substituting the values for a5s and u



from Equations (5) end (6) into Equation (20), an equation relating p, z1,

and z2 is obtained, which after sinplification reads:

2 i2 _ _ (22)! 2

If the point (O, t) in Figure (5) is assumed to move along the t axis,

the pressure p(t) is the given surface pressure history. The heights

shown in Figure (5) labeled z, and 2 may then be also considered to be

functions of t. Similarly the times t and t 2 may be considered ae func-

tions of t. The time ti is related to t by

t t- A (23)

Differentiating with respect to t,

dt 1 dz dtl
l 1 1 (24)dt c dt1  dt

dz1

The derivative d is what is meant by i 1 in Equation (22), for example.

From Equation (24)

dtl (25)

Defining zi to be the derivative T- p it follows, using Equation (25),

dz1 d 1  dt1  1c

Z1 M at- " T-7 c + (26)

Similarly, using

t 2  c - (27)

it is found that

d=2 2c
i a -" 2. (28)
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From Equations (26) and (28)

-- -- and - - (29)C C+ z1

Substituting Equations (29) into (22)

2c a . (30)
Etc2 1i

where p is p(t) and the prime@ denote differentiation with respect to this

same t. Equation (30) can then be integrated with respect to t to yield

the final equation

2c Z~)-" I(31)

C

where I(t) Is the impulse of the applied pressure per unit area defined by

t

I(t) f p dt (32)
0

The boundary condition -2 - Z1 a 0 at t - 0 was also used in deriving (31).

Equation (31) defines the locus &s(t) of the shock location in the

z, t plane and completes the solution of the problem.

TV. COMPUTATIONAL PROCEDURE.

The Equation (31) may be used to solve for the location of the shock

fro~t z2 at a time t 2 when the position z1 is known for the earlier time

t 1 . To begin the computations using Equation (31) it is necessary to

establish z1 at some early time t I as a starting point. A first and a

second approximation are given below and higher order approximations can

be developed by similar procedures.
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a) First Approximation for Short Times.

A pressure time history such as shovn in Figure 3 could be replaced

9 by a constant pressure pa for a short tile t0 so that the impulme during

this Interval is conserved. Then for the time interval selected i2 is a

c constant i20 and may be caiuted from Equation (5)t

'20 - o A + Pa (33)

The value of '2 is also a constant iO and is given by Equation (28). Then

[s2] ' 0 20 m zOt°  (34)

A starting point is nov established by uslzg

zl(t) . 2o (35)

and
t t + 2z 20t.t o + 20 (36)

0 C (6

b) Second Approximation for Short Times.

A pressure time history such as shown in Figure 3 can be represented

by a Taylor series:

t 2
p(t) - PO +opt+P,-+ g " " . . (37)

The values of a, and 22 may also be written Jin series form:

i - kit + k2t
2 + k3t

3 + . (38)

z2 - t +m 2 t 2 + t3 , .. (39)



-8.

The impulse applied at the surface, Equation (32) is:

1(t).- p t + p t p to.t.+ (140)

Substituting (38), (39) and (140) into Equation (30) and equating coeffici-

ents of each power of t yields:

2c (41i)

Ea cPo' 2 k2(42)
C

etc..

The functions z1 t), Equation (38), must a:.so be such that at the appropri-

ate time it Is equal to the value of Z2 of an earlier time. This re-

quirement mayr be written as:

21(t) . Z2(t c (43()t

where all brackets mean "a function of". Substituting (38) and (39) in

Equation (143) yields

kt+k2 + 2 lt-!kt + k 2 3

"~~~ +kt 3 +!~kt X t2 + kt 3 .0))

* m3t (k1t + k2t 
2 + k t3 +*..))3

+ etee... (144)
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Equating coefficients of each power of t in Equation (4i)o after expand-

ing each term gives

2k()

g etc...•

Equations (41) and (45) may be solved for k1 , ml:

k,- CPO 1 ~ i +A[-3 12 (147)

k, a [ + F + (48)

Equation. (42) and (46) may be solved for k2 , m2 considering klp mi known:

S2  ' k3 (49)

"

-~2 e 0  i (50)

Equation (39) con now be used with the coefficients m3, m2 given by (48)

and (50) to derive the second approximation of &2 corresponding to the

approximation of the surface pressure by the first two terms of (37).

If this approximation is considered adequate up to a time to then the

value of z2 at this time is z20:

z£ - _o + 2 (51)

A starting point -l(t) for the computations using Equation (31) is

ncf. obtainod by substituting (51) into (35) and (36).
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It may be shown that using only the first term of (51) .s equiva-

lent to the first approximation given above.

It should be noted that in any case, In the successive steps using

Equation (31), z2 Is computed first from Equatiem (31) and then t 2 is

computed from Equation (27). The next stop starts from zl(t) computed

by Equations (35) and (36) using z2 in place of s2 and to.

V. NMMRICAL EMPLE:

The following data are chosen as an Iflustration:

cc M 0.02

E - 1 x 106 psi

p - 4.04 slugs/ft 3

From these data

C - 5,960 ft/sec

The pressure time history at the surface is assumed given as shown

in Figure 6. The peak pressure p0 at t a 0 is not shown but was 184,000

psi. The impulse for the assumed loading is shown in Figure 7.

The computation is begun by applying the first approximation dis-

cussed above for the first 10 milliseconds. Equation (31) is then

applied repeatedly to develop the z versus t curve shown in Figure 8.

From Equation (22), ia can be derived for various t and a z. u5 can be can-

puted from Equations (5) and (6). Figure 8 shove the vlues of z, Ozs

and u plotted versus t.

To find the stress and velocity at a field point z a 500 feet, t -

200 m3, the characteristics through this point are drawn to locate points



I
1 and 2 on the z versus t curve as shown in Figure 8. Reading the a s

and u* curves directly below points I and 2 yields the values

V2 4#000 psi u2 - 58 ft/sec

a - 10,000 psi u1 - 103 ft/sec

Bubstituting these values into Equations (20) and (21) yields the field

values for z - 500 feet, t a 200 ms:

U * a 3,230 psi u - 62.6 ft/sec

The values of a and u at the surface and at depths of 500 and 700

feet were computed for various times. The results are plotted in Fig-

urea 6 and 9 against time after arrival of the shock wave for each

point.

VI. COMPARISON OF PLASTIC-ELASTIC MEDIUM TO A LOCKING MEDIUM.

The blast pressure at the surface z - 0 derived in the example above

for a plastic-elastic medium was applied to a locking medium also for

comparison of the responses of the two media. The locking medium is

defined by the stress-strain curve shown in Figure 10.

The response of a locking media to a given surface pressure of the

type shown in Figure 3 has been studied in Reference il] . The results

may also be derived as a limiting case (c - a-) of the problem treated

above. The location of the shock wave front at any time is given by
t 1/2

a . 2 f I(t) dt ]l2(52)
0

(11 Salvadori, Mario G.; Skalak, Richard, and Weidlinger, Paul "Stress

Waves in Dicuipa.tive 1!2dia" Transactions of the New York Academy of

Scicncoo, S-'r. II, Vol. 21, No. 5, Pr; s 427-434.
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where I(t) is the impulse applied at the surface floj, t,% .,.ro to time t:

t

I(t) - f p (t) dt (53)

0

Figure 7 shows the impulse of the surface pressure ased in the present

examples. The stress immediately behind the shock front is

[(t) ]2

and the particle velocity for all particles behind the wave front is:

a 1(t) (55)
Pzs

The numerical results for the following asi umed values are shown in

Figure 11:

p - 4.0 slugs/ft3

cc W 0.02

These are the same values as assumed for the plastic-elastic medium. The

vertical stress and particle velocity immediately behind the shock wave-

front in the plastic-elastic medium due to the same surface pressure are

shown in Figure 11 also for comparison. In both cases the stresses

shown are the peak stresses experienced at a given depth. The same is

true of the particle velocities.
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BYNOPSIS

aAsymptotic short time and long time solutions are derived in closed

form for the spherical wave propagation ia an infinite, ideal locking

9medium due to various types of time varyia pressures applied to the sur-

face of a spherical cavity. Among thes are: (a) a constant pressurej

(b) a center of dilatationj (a) an adiabatic gas expansion; (d) an energy

input due to an exploding point mass.

INTRODUCTION

The propagation of plane waves in various types of locking media has

been considered by several authors [4j, [5] p [6] . Spherical waves in

plastic locking media were investigated by Kompneets N7 and more recently

by Zvolinskii who derived the wave equations for an elasto-plastic medium

of limited compressibility [81 ]

Since, in general, closed form solutions of this type of problem

cannot be obtained, asymptotic closed form solutions are given in this

paper for an infinite ideal locking medium. An equation of motion is first

derived for large strains and displacements when a variable pressure is

applied to the surface of a spherical cavity. It is then shown that its

L4] "Stress Waves in Dissipative Media" by M. G. Salvadori, R. Skalak,
P. Weidlinger, Transactions New York Academy of Science, Ser. II, Vol. 21,
No. 5, pp 427-434, 1959.

"Waves nd Shocks in Locking and Dissipative Media" by M. G. Salvadori,
R. alak, P. Weidlinger, Journal Engineering Mechanics Division, ASCE, Vol.86,April 1960

1[6j "On the Plane )btion of Sand" by A. I. Ishlinskii, Ukr.Math. Journal
Vol. 6, No. 4, 1954.

[71 "Shock Waves in Plastic Compacting Media" by A. S. Kopaneets, Proc.I Acsemy of Science , USSR, 1956, Vol. 106, No. 1, pp 49-52.
[8] " "On the hission of an Ilastl Wave from a Spherical Explosion in

I the Ground" by N. V. Zvolinskii, P. N. H. Vol. 24, No. 1, 1960, pp 126-133.

!
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early time 0ayqotti solution is the rigorous solution of the ease prob-

lm when small strains and displacements are considered. lM log tim

asymptotic solution of the sue equation Is then shown to be the rigorous

solution for a point source pressure when large strains and displacement*

we again considered.

The behavior of a three-dimensional Ideal looking modium under coe-

pressive stresses is oharacterized an follows:

(a) At first the material of initial density p0 does not offer re-

sistanoe to compression but, once a critical value of the strain is reached#

the density changes abruptly to a value pl and a constant value of the

dilatation:

t" l- 1 0 p < 1 (1.)

is maintained from then on (Figure 1) .

(b) During the subsequent motion with a constant density pl the

material satisfies the three-dimensional yield condition derivable from

Coulomb's law of fallure [9]

ar a a +. 1 - k. (2)Or " r -€ r+-k (or + 00)()

where, due to synmtryj, the radial and tangential stresses r, aS are

principal stresses, the constant a Is proportional to the cohesion and

k Is a function of the coefficient of internal friction.

The above described behavior Is typical of certain cohesive granular

soils under high compressive stresses. Since under such stresses the ef-

fect of cohesion becomes neglLigible as compared to that of friction

[9] "On Coulomb's Law of Failure in Soils", by R. T. Shield Journal
Mach. fts. Solds, 4(1955), pp io16, may 1960.
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Equation (2) becomes:

go kr (3)

I with

0<k<1 (3.)

2. 8PHNtICAL WAVE EQUATIONS.

Consider a spherical cavity of initial radius r i in a infinite

ideal locking aedlum. Pros t a 0 on t eaet t mboundary is subjected to

a uniform pressure of intensity pjvbich is a function of the expanding

cavity radius ro . Let r be the Lagrangian coordinate of a particle, and

v its radial displacement at a time t, when the medium has been compacted

to a density p, up to a distanee R from the Gsvity centerp wkile beyond R

the medium is at rest with a density p. (Figure 2).

Under these assuMtions conservation of mass requires that:

(r -w) 3 a 1A.r- 141 3  (

and, in particularp that at the cavity betmdry, where r - r i + v - r °

X S r I+ (1 - t)(r 1/R)
3 ]"-/3 ()

For t << 1, and at an early time when the change in the cavity radius is

negligible, so that r0  ri, the ratio x oproaches the value:

xe - R/ri (6)

gAt late times when R is large enoug for (1 - g)(ri/R)3 to be much less

than &, the ratio x approaches the constant value:

XL l, 1 .1/3  (7)
! .
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Denoting time derivatives by dots, the particle velocity at r (V )

beccmes, by Equation (4):

. (R/r)2 , (8)

and at the wave front (r R):

I = -(9)

The particle acceleration, by Equation (8), becomeesl

V - t(RN + i2)r"2 - 22R4i2r _5 (10)

The equation of motion for an elementary volume of soil in spherical

coordinates (Figure 3) is given by:

ar +2(1- k)
r r

where ; is defined by Equation (10), and its particular solution satisfy-

ing the boundary condition:

0r] . p(ro) (12)

is for k 1/2:

r-2+2k 2P*2F -2+2 k rl
or -= P(ro)() + (02k (R +2w) [

2 *

Pl-2+2k (,r. 4 (13)
+r

(1 + k)r0  L
and for k - 1/2:

-l PL (2g +2 ) (iJ) +

r 0 P(r 0)(r0) " 1 2r B rRr (k. m /2) (13a)

+ 42 r ( r.I
_r B 7-r) 1-
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Coservation of momentum a0ros3 the wave front (r e R) requires,, by

Equation (9),t hat,

Or] r w ~ R(

Betting this value of ar in Zq,.(13),(3j), and minig use of Equation (3),

the equ&tion governing the motion of the wasve front beome:

UR die +(15)

in which the variable coefficients a and ere given for k j 1/2 by:

S1(2k (x-- x1))

(k j 1/2) (16)

22k + 2 (x - x2-)2 (X4 .2-2kp. -2 (2k -1)z ) (1 + k)(l. - 7

and for k m 1/2 by:

C6 X x
(k- 1/2) (16a)

III. Short Time Asymptotic Solution (Finite cavity,, smal strain, small

displacement solution).

Substituting x w xa from Equation (6) into Equations (16) one obtains

the differential equation valid for small displacements. A further simplifi.

oation is obtained by considering the strains to be small, i.e.p neglecting

terms in e andphencep the third term at the right hand member of A In

4
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Equations (16) or (16a). Since Equation (6) is valid when the expansion

of the cavity is negligible, and the pressure p is considered a function

of the cavity radius ro, the pressure is to be assumed constant:

p(r 0 ) - PO (17)

For an explosion of yield W and gas constant 71

4/3r3 (a)
0I

The solution of Equation (15) in terms of the non-dimensional wave front

radius:

x - R/r (6a)

thus becomes:

.2 2(2k - 1)p 1 Flx3~ l -
2 4 1-2k)2 [ 3  i )x1-"- k ) (18)a 1 x

pl(r i  x a a-2ka

The corresponding solution for k = 1/2 is:

2 .2 P olr L(3x l x,_ 1) + (18a)

IV. Long Time Asymptotic Solution (Point Source, finite strain, large

displacement solution).

Assuming for x the value E-1/3 given by Equation (7), the coefficients

m and 0 of Equation (15) become constant, and depend on I and k only. This

equation, rigorously valid for ri . 0, coincides with the equation derived

by Kompaneets. [7]

1 "A ::thod of Concealing Underground Nuclear Explosions" by A. L. Latter,
Lo../,vicr, E. A. Martinclli, W. G. McMillan; R-348 The RAND Corporaticu,

j: 30, 19)9.
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g oellowing pz tida" salutawn ef thi l eqatiom we of Interests

(a) center or NKlatatics.

IM eMwnitde P* 0 a the total touo emuerto ft the osilty surface
Is eesetant In tim so tat , lettia6:

a

te variable pressure V# by Dmtilms (4) at (9) hesommeu
a'" '' (20)

P'o j-2 ao
(P)a Tuci2/3

j ~ S Ch orrespoading solution of Ziuttas (15) In a

i2  . ,o , . . 2  (21)

If at a tim t - t:., Vhom R a R ,0 beom. sem, the vim from Propmaies

with a velocity$
-2

2. 23 /(p- ) (Ra j~ (22)
Oi 2ml~f 2a.)(l -

Bioe P/a, > 2 for all values of j an k, j2 approaches sero an ymto-

tiealy ad the veve front never stop&. This result stem from the negleo.

tion of the oohesion a in EqmtIon (2): a fi.lte value of a gives a finite

g t.m at VhICh the motion stops.

(b) Rgnnon of Aa Ideal Gas.

In the expanion of an Idel San the pressure p fol~ave the lar:

1 11±3),in p(r") 3 p(ro)' " K 1 (23)

g were 7 am K ar oonntant characteristics of the VA and of the energ

of the explosion.

!
I
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The solution of Equation (15) vhen the pressure p(r0 ) is defined by

Equation (23) and P/a > 37 (l), is:

2 K (ri ~ R3 (2.)P11 (P. - ul(1- U'

In this case also the introduction of a finite value for the cohesion intro-

duces a finite stopping time, as shown by Konpaneets [7]

(a) Exploding point mass. [12]

Consider a point mass 1 located In the medium at r w 0, which at

t w 0 explodes so that its particles acquire a radial velocity io . Assum-

ing that these particles remain on the boundary surface of an expanding

spherical cavity of radius r0, the total kinetic energy at a time t is

R
T -1 f ii 1 r2 dr + 1,.2 (25)

r
0

and, by Equations (7), (8) and (25), the rate of increase of this energy is:

dT . ,[g¢. 1 /3 - l)R 3 +M ." /] 1* + 6npl€(fl/3 _ )R2i 2  (26)

The rate of energy loss across the shock front is (Figure 4):

dE 1 1()
U - _ (27)

9mR

In the particular case of k - 1 no other energy losa can occur within the

medium so that:

dT + (28)dTR dE

Hence by Equations (26) and (27):

(R3 + r 3 )M + 3 R2A - o (29)

(11) For A/% < 37 there are no solutions of the point source equation.

[121 The authors are indebted to Dr. H. H. Bleich for this solution.



I

-9-

where

r3 1- (30)
- .''3)'2 4 2 '" 6(j'-/3 - 1)

The solution of Equation (29) with i(O) - R0 and hence an energy input

1 * 2

it E (n)31-

[I + 3
where 1/2 < tI< 1 for 0 < t < 1.

VI. Intermediate Range Solutions.

The variable coefficients a and 0 of Equation (15) approach their

asymptotic values for R--w , but become practically constant at finite

values of R depending on k and t. For example, the behavior of . and p

versus x. - R/ri is given in Figures (5a) and (5b) for k = 1, 1/2, and 0

when g - 0.1.

The solution of Equation (15) in the intermediate range between the

two asymptotic short time and long time solutions may be obtained by

numerical means starting at the limit of the range of validity for either

solution and integrating forward or backward, respectively.

The constant K, needed to continue the intermediate time solution for

an explosion in obtained by Equation (23). Table I shows the range of

validity of the two asymptotic solutions.

Table I

(t - 0.1)
Short Time Long Time

R 1.00 1.02 1.04 1.06 1.08 1.10 1.25 1.50 10 20
ri

* 1.00 1.02 1.04 1.06 1.08 1.10 1.25 1.50 -. . .

x 1.00 1.02 i.0o4 1.05 1.07 1.09 1.21 1.40 2.14 2.15 2.15

-- .. .. .. . .. .. .. .. 2.15 2.15 2.15
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